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A NET INFLOW METHOD FOR INCOMPRESSIBLE 
VISCOUS FLOW WITH MOVING FREE SURFACE 
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SUMMARY 
A new finite element procedure called the net inflow method has been developed to simulate time-dependent 
incompressible viscous flow including moving free surfaces and inertial effects. As a fixed mesh approach 
with triangular element, the net inflow method can be used to analyse the free surface flow in both regular 
and irregular domains. Most of the empty elements are excluded from the computational domain, which 
is adjusted successively to cover the entire region occupied by the liquid. The volume of liquid in a control 
volume is updated by integrating the net inflow of liquid during each iteration. No additional kinetic 
equation or material marker needs to be considered. The pressure on the free surface and in the liquid 
region can be solved explicitly with the continuity equation or implicitly by using the penalty function 
method. The radial planar free surface flow near a 2D point source and the dam-breaking problem on 
either a dry bed or a still liquid have been analysed and presented in this paper. The predictions agree 
very well with available analytical solutions, experimental measurements and/or other numerical results. 
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INTRODUCTION 

Incompressible viscous flow with moving free surfaces has drawn broad attention because of its 
important applications in environmental engineering, die casting, polymer processing and many 
other areas of interest. Owing to the presence of the moving free surface, analytic solutions to 
such problems are typically limited to only one-dimensional cases. Experimentation and prior 
experience had been the main tools for treating such problems until the mid-1960s when 
numerical solutions' became available. Generally, numerical methods for free surface problems 
can be divided into two groups based upon whether the mesh is moving or fixed after the initial 
input. Ideally, it is preferred that the free surface always lies on the mesh boundaries to avoid 
any discontinuities between the mesh points. When using the fixed mesh approach, the position 
of the free surface has to be interpolated between the mesh points and either an explicit or 
implicit smoothing of the discontinuities is required along such surfaces. On the other hand, the 
moving mesh solutions are typically confined to special applications owing to limitations in the 
rezoning technique. Accordingly, the fixed mesh approach is still the more appropriate means 
of handling general time-dependent free surface flows. 

For steady state problems most of the available methods manage to modify the mesh. Nickell 
et ~ l . , ~  Omodei3 and Silliman and Scriven4 released one boundary condition on the free surface 
and adjusted the initial free surface position and the corresponding mesh successively until all 
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boundary conditions were satisfied. Ruschak5 and Saito and Strived took the free surface 
position as a degree of freedom in order to reduce the number of iterations. Ryskin and Leal7 
generated an orthogonal co-ordinate such that all boundaries of the domain coincided with the 
co-ordinate line in two-dimensional axisymmetric space. 

For unsteady problems, Kheshgi and Striven* tracked the free surface position along 
preselected spines. Since the filling pattern is unknown, it may be difficult to generate appropriate 
spines before the problem is solved. Another moving mesh approach for unsteady problems is 
better known as the Lagrangian formulation. In this approach, the mesh points are treated as 
material points and the mesh varies according to the motion of the liquid. A close variant of 
this approach called the arbitrary Lagrangian-Eulerian was developed to handle 
possible mesh entanglement caused by material distortions. Whenever general motion of free 
surfaces is required, however, the fixed mesh approach seems to be a more viable candidate. 
Harlow and Welch'' solved the Navier-Stokes equations in Eulerian co-ordinates and tracked 
the motion of markers originally distributed in the liquid cell as material points (MAC) to locate 
the new position of the free surfaces. In simulating the injection-moulding process, Broyer et 
al. l 2  first defined the free surface position by means of a fractional volume of liquid, f, which 
is unity in regions completely occupied by liquid, lies between zero and unity near the front 
position and is zero otherwise. Hirt and Nichols13 expressed the mass conservation for an 
incompressible liquid in terms of the fractional volume of fluid (VOF) and obtained the kinetic 
equation 

af a !  af 
- + u - + u - = 0. 
at ax ay 

MAC and VOF are quite similar to each other and both can be applied in three-dimensional 
computations. However, there are concerns about the conservation of mass near the free surface. 
According to the definition in MAC,'." cells without marker particles are considered empty. 
Non-empty cells lying adjacent to empty cells are surface cells and all other cells with marker 
particles are considered filled. Similar definitions are used in VOF,I3 with the exception that 
the number of marker particles is replaced by the fractional volume of liquid. From such 
definitions, however, it follows that cells considered as being filled by liquid may not actually 
be filled. For instance, a partially filled cell may be surrounded by non-empty cells and be 
considered filled. In both methods the position of the free surface is updated after iterations on 
the momentum and continuity equations have converged. As a result, mass conservation can 
be satisfied only when the free surface recedes. If the free surface advances, empty or partially 
filled cells may actually become overfilled. Whenever a non-empty cell becomes filled or 
surrounded by other non-empty cells, the computational domain changes and the free surface 
boundary conditions have to be applied at the new location of the interface in the following 
time step. This sudden change may cause numerical instability or unphysical results for the 
velocity and pressure fields near the interface. After all, tracking the marker position is helpful 
in determining the new free surface location but the extrapolation of the marker position does 
not satisfy mass conservation. When a non-uniform mesh is used with VOF, a mesh point is 
not necessarily the geometric centre of the corresponding control volume. In this case the 
momentum advection becomes ina~cura t e '~  and such an error accumulates with respect to time. 

In this paper we consider the incompressible flow of a Newtonian liquid which is in direct 
contact with the air. It is well understood that by considering the interface to be traction-free 
(except for a uniform atmospheric pressure), the problem can be solved efficiently without 
including the motion of the air. However, this approach is convenient only for the moving mesh 



NET INFLOW METHOD FOR INCOMPRESSIBLE VISCOUS FLOW 67 1 

method in which the nodes are considered as material points that move with the liquid. When 
using a fixed mesh approach without considering the air, the velocity in elements crossing the 
interface cannot be determined, since part of the element is located in the undefined region. Also, 
it would be difficult to update the advancing free surface position since extrapolation into the 
undefined domain would be required. On the other hand, if both the liquid and the air are 
considered, more computational effort is required and there are discontinuities across the 
interface. These discontinuities exist in the pressure, velocity gradient and material properties. 

In our approach, the motion of both the liquid and a layer of air near the interface are 
considered based upon a fixed mesh approach. The volume of incompressible liquid in each 
control volume is calculated by directly integrating the net inflow rate of the liqud with respect 
to time. The governing equations will be derived below followed by the numerical algorithm. For 
verification, the radial planar free surface flow near a 2D point source as well as the dam-breaking 
problem on either a dry bed or a still liquid will be analyzed. The results will be compared with 
analytical solutions, experimental measurements and/or other numerical solutions whenever 
available. 

GOVERNING EQUATIONS 

When both the liquid and the air are considered, the equations governing the non-linear system 
are as follows: 

incompressible liquid, 

v . v = o ,  (2) 

air, 

aPair 
- + (V PairV) = 0, 

at 
(4) 

For the two-dimensional case the associated interfacial boundary conditions are 

In the above equations, t, u, u, p ,  p and p denote time, velocity components in the x- and 
y-direction, pressure, density and dynamic viscosity respectively. R and T are the gas constant 
and the absolute temperature respectively. Subscripts ‘1’ and ‘air’ refer to the liquid and air 
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regions respectively, while subscripts ‘t’ and ‘n’ denote the tangential and normal directions of 
the interface respectively. In addition, v and b denote the velocity vector and a possible body 
force acting on the liquid respectively. The surface tension on the interface is not included in 
this study. 

It should be noted that although the stresses are continuous across the interface, the pressure 
and velocity gradient are discontinuous owing to different material properties. Since the density 
and dynamic viscosity of the air are much smaller than those of the liquid, the viscous stresses 
on the interface have negligible influence on the motion of the liquid. This is the reason why 
the interface is often referred to as a ‘free’ surface. In this study the following assumptions are 
made. 

1. The pressure of the air is uniform. 
2. The kinematic viscosity of the air is equal to that of the liquid. 

From the momentum equation, it follows that the pressure gradient balances either the inertial 
force of the viscous effects, whichever is the larger. However, the motion of the air has little 
influence on the liquid and we are interested only in the motion of the liquid. Neglecting the 
pressure gradient in the air seems to be acceptable in this case. For the same reason, it should 
not make any difference whether we consider the real air or any other gas with very low density 
and small dynamic viscosity. Therefore, in the numerical analysis, the air is replaced by a 
pseudo-gas. The density pp, and dynamic viscosity pp of the pseudo-gas are much smaller than 
those of the liquid but its kinematic viscosity is taken to be the same as that of the liquid. With 
these assumptions the equations governing the liquid motion do not change but the governing 
equations of the pseudo-gas become 

P = Po9 (11) 

(12) 
av 
at 

p1 - = - p,(v V)v + p,v2v, 

where the continuity equation is not needed to determine the velocity of the pseudo-gas because 
the pressure is assumed to be uniform. Also, we have multiplied a coefficient ( = pl/pp = pl/pp) 
on both sides of the momentum equation such that the material constants become the same as 
those of the liquid. This can be done because the pseudo-gas is assumed to have the same 
kinematic viscosity as the liquid. 

Since the viscous effect of the pseudo-gas is negligibly small when compared with that of the 
liquid, the shear stress T and normal stress u, of the liquid on the interface must be equal to 
zero and the pressure of the pseudo-gas, p o  respectively, i.e. 

(13) 

On the other hand, (9) and (10) can now be written as 

vp = v1.  (14) 

The meaning of (13) is that the liquid does not ‘feel’ any resistance from the pseudo-gas except 
the uniform pressure. On the other hand, the pseudo-gas is driven by the liquid on the interface 
owing to the no-slip condition (14). 

From (13), the liquid pressure on the interface can be determined if the free surface position 
and the liquid distribution are known. Since there is a coupling relation between the liquid 
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pressure and the continuity equation (2), it seems that there are two constraints on the liquid 
pressure on the interface. However, it should be kept in mind that there is another unknown, 
namely the position of the free surface. In other words, if the interfacial position can be considered 
as one unknown, the number of unknowns matches the number of constraints on the free surface. 
Intuitively, the number of unknowns of the interfacial position in a multidimensional space is 
more than one. This is the reason why Kheshgi and Scriven’ determined the interfacial position 
along preselected lines so that there is only one unknown on each line. A more flexible solution 
was suggested by Broyer et al.,’’ who defined a scalar function called the fractional volume of 
liquid. Ideally, the fractional volume is unity in the region occupied by liquid and zero elsewhere. 
If the scalar field of the fractional volume is known, the position of the interface can be 
determined. In order to obtain the fractional function, Hirt and Nichols” solved the kinetic 
equation (1). However, since the interfacial position and the liquid pressure on the interface can 
be solved directly by satisfying the free surface boundary condition and the incompressibility 
constraint, the kinetic equation (1) is actually unnecessary. 

FINITE ELEMENT DISCRETIZATION 

The present net inflow method is based on the six-noded triangular finite element originally 
developed by Baliga and Patankar. l4 Prakash” improved the numerical stability of the 

(B) 

Figure 1 .  (A) Six-noded control volume finite element and variables at each node. Dashed lines are boundaries of mass 
control volume. (B) Same as (A) except that solid and dashed lines are boundaries of subelements and momentum 

control volumes respectively 
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procedure by incorporating the donor-cell upwind algorithm proposed by Schneider and Raw.I6 
However, if the aspect ratio of the elements is large (e.g. two) or the flow direction is parallel 
to one or more control volume boundaries, the donor-cell upwind method itself may cause 
numerical instability. The solution to these problems has been discussed elsewhere.” As shown 
in Figure 1(A), the triangular element includes six nodes, namely three at the vertices and three 
at the midpoints of the sides. There are two velocity components at each node and the pressure 
is calculated only at the vertex nodes. 

As shown in Figure l(B), an element is divided into four subelements by joining the middle 
nodes. The pressure is considered linear on each primary element whereas the velocity is 
interpolated linearly on each subelement. When considering the mass conservation of the liquid, 
each primary element is divided into three sub-mass control volumes (SMasCVs) by drawing 
lines from the centroid to the midpoint of each side, as indicated in Figure l(A). After an irregular 
domain is discretized with the triangular elements, as seen in Figure 2(A), the SmasCVs attached 
to the same vertex node constitute a mass control volume (MasCV). Such MasCVs may be 

(B) 
Figure 2. (A) Typical triangular discretization of an irregular doman and indication of mass control volumes. (B) Same 

domain as  in (A) but with momentum control volumes indicated 
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composed of one, two or more SMasCVs, depending on the number of elements containing the 
corresponding vertex node. For a given mesh, a flexible combination of these SMasCVs is much 
better than the whole MasCVs in fitting the irregular shape of the free surface. However, a 
special algorithm will be required to enforce the incompressibility constraint on the velocity in 
an MasCV in which not all its SMasCVs are filled. For handling momentum equilibrium, each 
of the subelements is divided into three quadrilaterals, as shown in Figure l(B). A momentum 
control volume (MomCV) is a polygon, as shown in Figure 2(B), composed of the quadrilaterals 
associated with each given node. Unlike the MasCVs, the MomCVs will not be divided into 
smaller units in the numerical procedure. 

NET INFLOW METHOD 

The major difficulty in a free surface flow problem is that the interfacial position, which does 
not appear explicitly in the governing equations as a variable, is unknown. However, the free 
surface boundary conditions on the interface in (13) cannot be satisfied simultaneously with the 
continuity equation of the liquid unless they are applied in the appropriate domain. In other 
words, the interfacial position can be determined by adjusting its initial position successively 
such that all the conservation equations and free surface boundary conditions are satisfied 
simultaneously. For a fixed mesh method, it is inevitable that some of the elements or control 
volumes may be located across the interface. This implies that the conservation equations and 
the free surface boundary conditions can only be satisfied approximately. In this work, the exact 
position of the interface is not required for the numerical procedure. It is determined only to 
display the predicted solution. 

At the beginning of a time step, the initial condition or the result from the previous time step 
is used as the initial guess. Based on the distribution of the liquid, all the SMasCVs are divided 
into three categories: filled, partially filled or empty. Equations (2) and (3) are applied in those 
subelements associated with the filled SMasCVs. For those subelements in the partially filled 
region, equations (1 1) and (12) are employed. The interfacial boundary conditions (13) and (14) 
are applied on the nodes attached to both filled and partially filled SMasCVs. Most of the empty 
region is excluded from the computational domain to reduce the computational effort. After 
each iteration the volume of liquid in each SMasCV is updated. If the solution is correct, all 
SMasCVs filled by liquid should have been included in the filled region. Any violation means 
that the mass conservation of the liquid is not properly satisfied and the computational domain 
should be corrected based on the updated status of the control volumes. In other words, the 
approximate interfacial position is approached successively by adjusting the region where the 
incompressibility constraint and the free surface boundary conditions should be applied. The 
implementation of the numerical procecure is illustrated as follows. 

Volume of liquid in SMasCV 

The instantaneous volume of liquid in an SMasCV is the sum of its initial volume and the 
net inflow of the liquid from the beginning till then. In an SMasCV, e.g. ABOF in Figure 1(A), 
the net inflow rate is the sum of the volumetric flow rate through its four boundaries, namely 
AB, BO, OF and FA. The volume inflow rate of fluid across each boundary can be expressed as 

4 = (v, - n,)L, 

where L, v, and ni are the length of the boundary, the velocity vector at the centre of the boundary 
and the inward unit vector perpendicular to the boundary respectively. As an implicit scheme, 
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the velocity at the end of a given time step is used in (15). It should be noted that the fluid 
flowing across a boundary is not necessarily liquid or air. In order to determine the actual 
amount of liquid flowing into the SMasCV, an effective flowing time 6t will be defined such that 
the volume of liquid flowing across a boundary during a time step is 

The total volume of liquid in an SMasCV at the end of the ith iteration of a time step k is 
updated by adding the net inflow of liquid through its boundaries and is expressed as 

q: = qk-' + f Aq,,, 
f l = l  

where m is the number of boundaries with non-zero effective flowing time. If qf is zero, the 
corresponding SMasCV is considered empty. If q: is larger than zero but smaller than the total 
volume of the SMasCV, Q, the SMasCV is partially filled. Otherwise the SMasCV is filled. It 
should be noted that the volume of liquid in a partially filled SMasCV should be updated after 
each iteration by using (17). It is possible that the calculated volume of liquid in a partially filled 
SMasCV may exceed its available volume during a given iteration. This simply means that the 
velocity in this SMasCV has not converged and the iteration should continue after the 
computational domain is adjusted, as discussed further below. 

Effective Po wing time 

During a time step, the fluid flowing through the boundary may be air, liquid or both, 
depending on when the liquid reaches the boundary. This means that the effective flowing time 
of the liquid, 6t, at a boundary may be equal to or less than the time step At. If 6t is always 
taken to be At, the magnitude of the velocity on the free surface will not be correct since the 
volume of liquid flowing across the boundary is limited. At the beginning of a time step, an 
effective flowing time is assigned to each SMasCV. The effective flowing time is At if the SMasCV 
is filled and zero otherwise. After each iteration the volume of liquid in each empty or partially 
filled SMasCV within the computational domain is updated. If the volume of liquid in an 
SMasCV, &', is less than the total volume of the SMasCV, Q, at the beginning of a given 
time step, k,  and the updated volume, q:, becomes equal to or larger than the total volume after 
the ith iteration, the effective flowing time of this SMasCV should be updated as 

The effective flowing time for a boundary is simply equal to the larger effective flowing time of 
the two SMasCVs on either side of the boundary. 

Computational domain 

An element with all three of its SMasCVs empty is designated an empty element. In each 
iteration, these empty elements are excluded from the computational domain, except for those 
sharing nodes with non-empty elements. As a result, a layer of empty or partially filled elements 
near the interface and all the filled elements are included in the computational domain, which 
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ComputaUonal Domain 4 

0 Fffled llfl PartiallyFilled 0 Empty 

(A) 

pressure node on the free surface 

Free-surface node Ddvennode 
(B) 

Figure 3. (A) Typical computational domain. (B) Corresponding free surface and driven nodes based on status in (A) 

is updated after each iteration. As shown in Figure 3(A), the computational domain in this case 
has been divided into 31 primary triangular elements. Based on the given distribution of 
the liquid and the geometry of the mesh, each SMasCV can be categorized as being either 
filled, partially filled or empty. In turn, if a node is surrounded by only filled SMasCVs, it is 
considered to be an interior node. All other nodes within the computational domain are 
considered to be exterior nodes. These exterior nodes are further divided into several groups 
such that the free surface boundary condition can be applied. In particular, the exterior nodes 
associated with filled SMasCVs are known as free surface nodes. The other exterior nodes 
immediately adjacent to the free surface nodes are called driven nodes. These definitions will be 
used in the implementation of the interfacial boundary conditions. In Figure 3(B) the free surface 
nodes and driven nodes have been determined based on the status of the SMasCVs given in 
Figure 3(A). 
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Conservation of mass 

approximated as 
In a control volume filled with liquid, the continuity equation (1)  can be integrated and 

i =  1 

where rn is the number of linear boundaries surrounding the control volume. Obviously, (19) will 
fail if the control volume is not completely filled by the liquid. As defined earlier, an MasCV is 
composed of several SMasCVs. If none of these SMasCVs is filled, the pressure within the 
MasCV is considered to be that of the empty region and no mass conservation for the liquid 
is required. If one or more SMasCVs in an MasCV are filled, the velocity within these filled 
SMasCVs should be divergence-free such that the conservation of mass is satisfied. In the 
following, two methods, namely the discrete migration scheme (DMS) and the continuous 
interpolation scheme (CIS), will be proposed to handle this problem. 

As shown in Figure 4, an irregular domain has been divided into three primary triangular 
elements ABC, BDC and BED. At the beginning of the present time step suppose that SMasCV 
B, is filled, A,, 9, and C,  are partially filled and all the others are empty. During this time step 
a given volume of liquid Aqin, flows into SMasCV B, from outside. In the discrete migration 
scheme, the incompressibility constraint is enforced only within the filled SMasCVs. According 
to this approach, the mass conservation during the first iteration of the present time step needs 
to be considered only in B1 as follows: 

Aqin + A q a ~ . b l  + A q c l . b l  + A q b 2 , b l  = 0, (20) 

where the subscripts denote the SMasCVs associated with the boundaries across which the liquid 
flows. Note that the liquid volume is taken to be positive if it flows into SMasCV B,. After the 
first iteration, the volume of liquid in A,, B, and C,  should be updated according to the methods 
described above. If none of them becomes filled, then the iteration continues without any change 
in the computational domain. However, some of the partially filled SMasCVs will eventually 
become filled. If, for instance, SMasCVs B, and A, are found to be filled during a particular 
iteration, the incompressibility constraint should be updated accordingly. In MasCV A, the net 
inflow of the liquid must be equal to the volume of the void in the control volume, i.e. 

A q b l . a l  A q c l , a ~  = Q a l  - q a l ,  (21) 

C D 

A E 

partially filled G 
Figure 4. Mass conservation in a mass control volume with filled, partially filled and empty submass control volumes 
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where qal denotes the volume of liquid in A, at the beginning of the current time step. It should 
be noted that in (20) and (21), A q b l , a l  and denote the same volume but of opposite sign. 
Similarly, the net inflow of the liquid in SMasCVs B, and B, has to equal the void in B,, i.e. 

Aqin -k A q a l , b l  -k A?lqcl.bl - (Aqb2,c2 + Aqb2,dl  + AqbZ,b3) = Qb, - q b 2 .  (22) 

Since B, and B, belong to the same MasCV, the liquid flowing through the boundary between 
B, and B, does not have to be considered in (22). The same procedure is repeated if any other 
SMasCVs become filled during the following iteration. 

As the distribution of the liquid changes in the domain, the computational domain and the 
incompressible region migrate accordingly but discretely. The resulting discrete migration 
scheme is very simple and easy for numerical implementation. However, for a highly non-linear 
problem, a sudden change in the computational domain and boundary conditions increases the 
required number of iterations and the possibility of divergence. On the other hand, an SMasCV 
is considered unfilled even if the volume of liquid is very close to but still less than its total 
volume. In practical applications, this means that the numerical solutions may be mesh- 
dependent and sensitive to the truncation limit. In the continuous interpolation scheme the 
liquid flowing between the filled and partially filled SMasCVs within the same MasCV is 
interpolated linearly. For example, in (20) the liquid volume A q b 2 , b l  flowing from B, to B, is 
replaced by an interpolated volume defined as 

Aqb2.bl. int = ( l  - f b 2 )  Aqb2,bl - fb2(AqbZ,cZ + Aqb.2.dl + Aqb2.b3), (23) 

where fb2 is the volume fraction of liquid in B,. It can be seen easily that (23) offers a smooth 
transition between (20) and (22). As a result, the continuous interpolation scheme is more stable 
and its solution is less mesh-dependent. 

The continuity equations (20)-(22) can be solved explicitly with the pressure or implicitly 
using the penalty function method. For example, when using the implicit method, the continuity 
equation (20) and the corresponding liquid pressure are combined with the penalty function 
defined as 

9 (24) 

where E~ is the penalty factor, which can be any positive number much smaller than unity but 
still much larger than the truncation limit of the computer. When compared with the explicit 
method or other iterative solutions, e.g. the SIMPLE'* algorithm, the penalty function reduces 
the number of unknowns (pressure) and still offers fast convergence. However, the penalty factor 
must be small. If it is large, the compressibility error increases. On the other hand, the round-off 
error may become significant if the penalty factor is close to the truncation limit of the computer. 
In the proposed expression (24) the compressibility error in the numerator is normalized by the 
control volume such that the percentage of the compression error is independent of the element 
size. For the problems we have tested, a penalty factor between lop4 and lo-' seems to be 
appropriate. Details of the fundamental principles and the error estimate of the penalty function 
can be found e l s e ~ h e r e . ' ~ - ~ ~  When the status of the SMasCVs in an MasCV changes, the 
corresponding pressure can still be expressed using the penalty function. Similarly to (24), (21) 
can be expressed by the penalty function as 

Aqin + A q a l . b l  -k A q c l . b l  -k AqbZ,bl 
P B  = 

EpQt.1 
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Momentum equilibrium 

The resulting equation can be rearranged using the divergence theory and expressed as 
For momentum equilibrium, equation (3) is integrated in each momentum control volume. 

m 

(26) 

where superscript k and subscripts i and j denote the kth time step, the ith iteration and the jth 
boundary respectively. A, m and no are the area of the MomCV, the total number of linear 
boundaries surrounding the MomCV and the outward unit vector perpendicular to each 
boundary respectively. Since the body force and pressure are the only differences between (3) 
and (lo), equation (26) is applicable for the whole computational domain, except that the pressure 
and body forces need to be integrated only when they are non-zero. In order to avoid the 
numerical instability at high Reynolds number, the velocity in the non-linear advective terms is 
determined by the donor cell upwind method.’’ For better convergence, the momentum 
equilibrium equation and the continuity equation should be solved simultaneously with the 
Newton-Raphson method. When using the penalty function method, the pressure in (26) is 
replaced by the penalty function (24) or (25). 

k Ap,(v: - vk- I) + Ar 1 [p,(vl- * no)vi, + pino - pl(no - Vv))]Li = AtAb, 
j =  1 

Interfacial boundary conditions 

For the interfacial boundary conditions (13) and (14), the free surface nodes are considered on 
the liquid side and the driven nodes on the air side of the interface. The no-slip boundary 
condition (14) and the zero-shear-stress boundary condition in (1 3) are implemented by forcing 
the velocity at the driven nodes to follow the liquid velocity at the free surface nodes. To achieve 
this, the viscous force between the free surface nodes and the driven nodes is multiplied by a 
large constant 1/~,  when integrating on the driven nodes. On the other hand, this viscous force 
is excluded when integrating the forces on the free surface nodes. As a result, the liquid velocity 
at the free surface nodes is not affected by the viscous diffusion from the pseudo-gas and the 
pseudo-gas velocity at the driven nodes follows the liquid velocity at the free surface nodes 
closely. The penalty factor, E,, multiplying the viscous force should be positive and much smaller 
than unity. In our experience it is appropriate to set E ,  such that 1 / ~ ,  = lORe, where Re = p U 4 p  
is the Reynolds number. 

In (13), the vector normal to the free surface is required to calculate the velocity gradient in 
that direction. This does not mean that the exact position of the interface must be known. The 
fractional volume of liquid can be used to find the normal vector of the interface without knowing 
its exact position. In each MasCV, the fractional volume of liquid at the corresponding vertex 
node is defined as the ratio of the liquid volume to its total volume. As with the pressure, the 
distribution of the fractional volume is interpolated linearly over each primary element. The 
interfacial pressure is first calculated in each sub-element associated with a filled SMasCV and 
then an average is taken at the vertex node according to the following procedures. For each 
filled SMasCV, the gradient of the fractional volume of liquid, VJ in the associated primary 
element is taken and normalized by its own magnitude. The average of these normalized vectors 
associated with the same vertex node is taken as the inward vector n, which is perpendicular to 
the free surface. If the air pressure p o ,  is taken as zero, then the interfacial pressure in each 
subelement within a filled SMasCV can be expressed as 

p = 2 pl(n - V)(v - n). (27) 
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After the interfacial pressure in every filled SMasCV is obtained, the average is taken as the 
interfacial pressure at the vertex node. Since the interfacial pressure is calculated for the liquid, 
which is incompressible, it is important that the velocity be divergence-free. This is why the 
average is taken only among those subelements within the filled SMasCVs. On the other hand, 
it also explains why the interfacial pressure predicted with the discrete migration scheme is 
expected to be better than that from the continuous interpolation scheme (23), noting that the 
former satisfies the incompressibility constraint in the filled SMasCVs more exactly than does 
the latter. 

Pressure in the domain 

Based on the assumptions made in this study, the pressure of the pseudo-gas is uniform and 
taken as the reference pressure. The liquid pressure at the vertex node associated with filled 
MasCVs can be solved explicitly with the continuity equations (20)-(22) or implicitly using the 
penalty functions (24) and (25). Therefore, the pressure within an empty or filled MasCV can be 
determined. However, the incompressibility constraint and the liquid pressure on the interface 
need further consideration. If some of the SMasCV in an MasCV are filled but the others are 
not, the vertex node within the MasCV is considered on the interface. Since the interfacial 
pressure of the liquid on the free surface nodes is determined from the stress balance boundary 
conditon on the interface in (27), it seems that the continuity equation is unnecessary on the 
interface. However, the volume of liquid flowing between the filled and partially filled SMasCVs 
cannot be determined correctly unless the mass conservation of the liquid is satisfied within the 
filled SMasCVs. In particular, the velocity in a partially filled control volume is actually the 
average velocity of the liquid and the air. This is one of the major reasons why the predicted 
velocity in a partially filled MasCV needs to be adjusted to satisfy the incompressibility 
constraint. In the present approach, the adjustment is made by the following method. At each 
vertex node on the free surface, two pressures are determined. One is the physical pressure 
obtained from the free surface boundary condition (27), while the other, which is called the 
pseudo-pressure, is associated with the incompressibility constraint of the liquid velocity within 
the filled SMasCVs of a partially filled MasCV. Similar to the physical pressure, the pseudo- 
pressure is interpolated linearly over a primary element. However, there are two differences 
between them. First, since the pseduo-pressure is not the physical pressure, it should not affect 
the liquid pressure and the velocity of the interior nodes. Therefore the pseudo-pressure is 
excluded when integrating the force of the interior nodes in the momentum equation (26). 
Secondly, the pseudo-pressure in a primary element is multiplied by a weighting factor equal to 
the volume fraction of liquid in the SMasCV associated with the pseudo-pressure node. This 
weighting factor enforces the influence of the pseudo-pressure on the liquid velocity perpendicu- 
lar to the interface. As with the physical pressure at the interior nodes, the pseudo-pressure can 
be determined explicitly with the continuity equation or implicitly using the penalty function 
method. 

Iteration procedure 

The solution procedures can be divided into three parts, namely the initial guess, the following 
corrections and the criterion of convergence. In addition, there are two convergence criteria, 
namely one for the status of the SMasCVs and the other for the non-linear advective terms. 
During each time step, either the initial condition for the first time step or the result from the 
end of the previous time step is taken as the initial guess. As shown in the block diagram in 



682 S. P. WANG AND K .  K.  WANG 

v, q. ... d=+ 
I t= t + A t  I 

c 
status of 
SMaCV 

Domain 

Interfacial 
Pressure 

I 

.1 

1 

Tangential 
Matrix 

Boundary 
Conditions 

A u .  Av 
and A q  

I 

=3 status 

Receding i Interface 

I I 

function 

Figure 5. Iteration procedure for net inflow method 

Figure 5, when using the penalty function approach, only the incremental velocity is obtained 
by using the Newton-Raphson method. The pressure is then calculated after the iteration 
converges. If the pressure and the continuity equation are explicitly included, on the other hand, 
then both the incremental pressure and velocity are solved simultaneously. After each iteration 
the status of the unfilled SMasCVs and computational domain is updated based on the new 
volume of liquid in each SMasCV. Convergence is reached if none of the SMasCVs becomes 
filled during the last iteration and the root mean square of the incremental velocity is negligibly 
small. 

Receding free surface 

In contrast with the case where the free surface advances, if the free surface recedes, 
then its new position must have been included in the region where the velocity is divergence- 
free. Since the volume of liquid that recedes from its original position can always 
be tracked after convergence is reached, the new position of the receding interface is up- 
dated after the iteration is over. After convergence is reached, evidence of a receding interface 
is indicated if the volume of liquid in an SMasCV becomes negative. This means that part 
of or all the fluid flowing out from the SMasCV during this time step is actually pseudo- 
gas but was taken as liquid. This negative volume can be corrected for by subtracting the 
same amount of liquid from the neighbouring SMasCVs into which the fluid had supposedly 
flowed. 

For instance, let us consider a SMasCV with total volume Q and a negative volume of liquid, 
-4. By checking the velocity along its boundaries with non-zero flowing time, those neighbour- 
ing SMasCVs into which the fluid flows can be identified. Let m be the number of these SMasCVs 
and Aqi ( i  = 1,2, ..., m) be the volume of fluid that flowed from the SMasCV with negative 
liquid volume into each of these SMasCVs during the given time step. The volume of liquid in 
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these SMasCVs should be corrected as 

683 

1 Aqj 
j =  1 

where superscript 'c' denotes the corrected volume of liquid. After the above correction is made, 
the negative volume of liquid is set to zero. 

NUMERICAL EXAMPLES 

Several two-dimensional examples have been analysed with the net inflow method. These include 
the radial planar flow from a point source and the collapse of a water column on either a dry 
bed or still water. The numerical results are compared with analytical solutions, experimental 
measurements and/or other numerical solutions whenever available. 

Radial planar pow near a point source 

As shown in Figure 6, the free surface flow in a rectangular domain near a point source in 
two-dimensional space is considered. The liquid with constant density p = 1 and constant 
velocity viscosity p = 0.1 flows out from a two-dimensional point source with volumetric flow 
rate Q = 2n. The problem is one-dimensional in cylindrical co-ordinates but two-dimensional 
in rectangular co-ordinates. For convenience, the volumetric flow rate from the point source as 
well as the size and location of the rectangle are chosen such that both the characteristic velocity 
and length are one. The analytical solution in cylindrical co-ordinates is given by 

where r p ,  u, and p denote the position of the interface, the radial velocity and the liquid pressure 
respectively. The time t, is measured from the moment when the liquid begins to flow out from 
the point source; r is the radial distance from the point source. The analytical solution for the 

Figure 6. Schematic diagram of radial planar flow near a point source 
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Figure 7. 120-element mesh used to analyse radial flow in rectangular domain indicated in Figure 6 

velocity is used as boundary conditions, including the effective flowing time, along the left and 
bottom of the rectangular domain. The initial condition is u = o = 0 within the domain and the 
penalty parameter is In order to understand the dependence of the numerical solution on 
the mesh size and mesh type, the problem has been solved with three finite element models 
incorporating 120, 480 and 488 elements respectively. As shown in Figure 7, the domain has 
been divided into 6 x 10 uniform rectangles such that the aspect ratio of each rectangle is 
approximately one. Each rectangle is further divided into two triangular elements and the total 
number of triangular elements is 120. The dashed lines represent the boundaries of the mass 
control volumes (MCVs). Similarly, in the 480-element model, the domain is divided into 12 x 20 
uniform rectangles and each rectangle is divided into two triangular elements. As seen in Figure 
7, although the domain can be discretized conveniently with a regular mesh, the resulting sizes 
of the MCVs are non-uniform. In order to test the effect of these non-uniform MCVs, we also 
solve the problem with a 488-element mesh, as shown in Figure 8, generated using a commercial 
mesh genera t~r .~ '  In particular, the angles of most of the triangular elements in Figure 8 are 
equal to or close to 60". As a result, the sizes of most of the MCVs are similar to each other, 
except for those associated with the domain boundary. The predicted free surface positions, the 
pressure history at  (0, 1) and the pressure distributions are shown in Figures 9-12. 

The free surface positions (which have been taken to correspond to where the fractional volume 

Figure 8. Same as Figure 7 but with 488 elements 
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Figure 9. Comparison between free surface positions predicted with 120element mesh (fine dashed curve: CIS; coarse 
dashed curve: DMS) and analytical solution (solid curve) for radial planar flow at t = 0.9, 1.4 and 1.9 s 

(B) 
Figure 10. Comparison between analytical solution (solid curve) and free surface positions for radial planar flow 
predicted with (A) 120 elements (coarse dashed curve) and 480 elements (fine dashed curve) and (B) 488 elements (dashed 

curve) at t = 0.9, 1.4 and 1.9 s, all obtained using DMS 
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Figure 1 1 .  Pressure history at (0, I )  for radial planar flow predicted with (A) 120 elements and (B) 480 and 488 elements 

is 0.5) predicted with the 120-element mesh using the discrete migration scheme (DMS) and the 
continuous interpolation scheme (CIS) have been compared with the analytical solution in Figure 
9. The free surface position predicted with the CIS is better than that obtained with the DMS, 
since the CIS allows a smooth transition in the incompressibility constraint of the liquid velocity 
near the interface. However, in both cases the deviation between the numerical predictions and 
the analytical solution seems to be 'wavy'. Furthermore, the deviation is larger when the interface 
moves in the 90" direction, in which the uniformity of the MCVs is more significant than it is 
in the 45" direction. By comparing the predicted free surface position with that obtained with 
the 480-element mesh, as shown in Figure 10(A), it can be seen that both the 'amplitude' and 
'period' of the deviation reduce significantly when the mesh size is refined. On the other hand, 
with approximately the same number of elements, it can be seen in Figure 1qB) that the free 
surface position predicted with the 488-element mesh is smoother than that obtained with the 
480-element mesh. 

For the pressure prediction it can be seen from Figures 11(A) and 12(A) that the pressure 
obtained with the DMS is better, especially near the free surface. This is because the liquid 
pressure near the interface is closely related to the velocity in (27) and the velocity predicted 
with the DMS satisfies the incompressibility constraint within the filled SMasCVs more exactly 
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Figure 12. Pressure distribution for radial planar flow at r = 1.5 s predicted with (A) 120 elements and (B) 480 and 480 
elements 

than with the CIS. As shown in Figures 11(B) and 12(B), the deviation between the predicted 
pressure distributions and the analytical solution can be reduced by refining the mesh. Note 
that in Figure 11(B), the predicted pressure is much smoother with the 488-element mesh where 
the angle of each element is equal to or close to 60". 

Collapse of a water column on a dry bed 

The dam-breaking problem is also known as the collapse of a water column. It includes both 
advancing and receding motion of the free surface and the experimental data obtained by Martin 
and Moyce26 are available for comparison. Similar problems have been studied numerically by 
Harlow and Welch," Hirt and N i ~ h o l s ' ~  and Huerta and Liu." In order to compare our 
solution with the experimental result, the water column is chosen to be a 5.715 cm x 5.715 cm 
(2.25 in x 2.25 in) square column. 

As shown in Figure 13(A), the dam is suddenly broken at time t = 0 and the water column 
starts to collapse owing to gravity g = 9.8 m s - ~ ,  The density of water is 1000 kg m-3 and its 
viscosity is taken to be 0001 kg m- '  s-'. For convenience, the dimensionless time and length 
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(C) 
Figure 13. (A) Schematic diagram of collapse of a water column and two finite element configurations corresponding 

to (B) 180 uniform elements and (C) 660 uniform elements 

are defined as T = t J ( g / H )  and X = x / H  respectively. A 6 x 15 mesh and an 11 x 30 mesh, 
shown in Figures 13(B) and 13(C) respectively, have been used to test the finite element 
program. A constant time step AT= 0.1 has been used with the 6 x 15 mesh. For the 11 x 30 
mesh AT is 005 during the first 15 steps. As the water accelerates during the collapse, a smaller 
AT = 0-025 has been used during the following 30 time steps. The penalty parameter E~ has 
been taken to be 1.0 x The initial condition is u = u = 0 everywhere and the elements 
within the column are occupied by water. The continuity equation is integrated with the discrete 
migration method and the predicted position of the free surface along the dry bed is compared 
with Martin and Moyce’s experimental resultsz6 in Figure 14. The solution obtained with the 
6 x 15 uniform mesh starts out in good agreement with the measurements until T z 0.9. 
The subsequent deviation is due to the reduced thickness of the water layer along the bed 
and the relative coarseness of the mesh. After the mesh is refined, the comparison is 
significantly improved. The free surface positions and the liquid velocities at each node 
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Figure 14. Front position x / H  versus time T =  t , / (g /H)  along dry bed during collapse of water column 

Figure 15. Predicted free surface position (dashed curve) and velocity of water at T = 0.5 based on mesh with 660 
elements 

obtained with the 11 x 30 non-uniform mesh at  T = 0.5,l.O and 1.5 are shown in Figures 15-17 
respectively. 

Dam-breaking waves on a still liquid 

Unlike the previous example, when a dam collapses on a still liquid, waves are generated 
owing to the sudden change in depth of the liquid. Since the dam is assumed to break 
instantaneously, the acceleration of the liquid along the dam surface is infinite at time t = 0. 
This singularity can be removed by assuming the slope of the dam to be finite. Since the liquid 
velocity and the deformation of the free surface are large near the leading wave but very small 
both upstream and downstream, the problem can be used to test the numerical stability,'O 
especially for a fixed mesh method with non-uniform control volumes. In order to verify our 
prediction, the problem is defined according to the specifications given by Huerta and Liu,'O 
with the exception that the dam is taken to be vertical in the present calculation. As shown in 
Figure 18, the depth of the still water is 25% of the total depth of the dam, which is 20 m. The 
density and viscosity of the liquid are 1600kgm-3 and lOOOPas-' respectively. In our 
numerical analysis the domain has been divided into 9 x 40 uniform rectangles, as shown in 
Figure 19. In this case the continuity equation has been integrated with the continuous 
interpolation scheme and the time step At is 015,/(H/g), where H = 15 m and g = 9.8 m s - ~ .  
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--- 
Figure 16. Same as Figure 15 but at T = 1.0 

_ _ _  _ _  - 

Figure 17. Same as Figure 15 but at T = 1.5 

Figure 18. Schematic diagram of dam-breaking problem on still liquid. Dashed line denotes dam assumed by Huerta 
and Liu’O 

The predicted free surface positions at T = 1.5, 3, 4.5 and 6, where T = t J ( H / g )  is the 
dimensionless time, are shown in Figures 20-23 respectively. Also shown are the free surface 
positions obtained by Huerta and Liu” with their arbitrary Lagrangian-Eulerian method at 
T = 3 and 6 in Figures 21 and 23 respectively. In Figure 20 the liquid immediately in front of 
the broken dam is pushed upwards and forwards by a large pressure gradient while the water 
column collapses. It should be noted that the scales are different in the horizontal and vertical 
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Figure 23. Same as Figure 21 but at T = 6 

directions. In Figure 21, a leading wave has formed and moved forwards. The plateau-like wave 
shape in Huerta and Liu's solution" is believed to be related to the coarse mesh and initial 1: 1 
slope assumed in their calculation. As shown in Figures 22 and 23, when the leading wave moves 
forwards, a series of secondary waves with smaller wavelength and amplitude form and follow 
behind the leading wave. Apparently, the shape and motion of these secondary waves can only 
be predicted accurately with a finer mesh with uniform MCVs. However, the amplitude, shape 
and position of the travelling wave predicted with the regular mesh are seen to agree closely 
with those of Huerta and Lids result." 

CONCLUSIONS 

A new control volume finite element procedure called the net inflow method as been developed 
to simulate time-dependent incompressible viscous flow with moving free surfaces in two- 
dimensional space. The 2D Navier-Stokes equations in primary variables (velocity and pressure) 
are solved with a fixed mesh approach, so that problems with irregular geometry can be 
considered. The method is efficient, since only the region occupied by the liquid and a layer of 
air near the interface are included in the computational domain. The CPU time can be further 
reduced by incorporating the penalty function method. Since the resolution of the predicted 
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interfacial position is closely related to the conservation of mass near the free surface, each mass 
control volume is divided into several sub-mass control volumes. For a given mesh the flexible 
combination of these sub-mass control volumes gives much better resolution than the whole 
mass control volumes in fitting the irregular shape of the free surface. Near the free surface, the 
continuity equation of the liquid can be integrated discretely in the filled sub-mass control 
volumes or continuously with a special interpolation method. No material marker or additional 
kinetic equation is required to track the interfacial position. During the iteration the exact 
position of the interface does not have to be determined and the free surface boundary 
conditions are satisfied on the interfacial nodes determined based on the status (filled or 
non-filled) of the submass control volumes. The method has been used to analyze several free 
surface flow problems.” The examples presented in this paper show that the net inflow method 
is stable, efficient and can be applied in the analysis of general 2D incompressible free surface 
flow problems including inertial effects. 
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